Code No.: 14316 N/O

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (EEE: CBCS) IV-Semester Main & Backlog Examinations, May-2019

Electronics Engineering-II

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	M	L	СО	PO
	$Part-A (10 \times 2 = 20 Marks)$				
1.	Mention the advantages of Cascading amplifiers.	2	2	1	1
2.	A differential amplifier has V_{s1} =10mV, V_{s2} =9mv.If it has A_d =60dB and CMRR=80dB.Find its output Voltage.	2	1	3	1
3.	An amplifier with a gain of 8 has 10% of its output fed back to the input. Determine the gain of the stage i) with negative feedback. ii) with positive feedback.	2	2	1	1
4.	What is the effect of voltage series negative feedback on input impedance, Voltage gain, output impedance and band width of the amplifier?	2	1	1	1,2
5.	Briefly explain the term 'piezoelectric effect'	2	2	2	1
6.	A Wein bridge Oscillator has a frequency of 500Hz, If the value of C is 100pF. Find the value of R?	2	1	2	1,2
7.	Explain Cross – over distortion in power amplifiers.	2	2	1	1
8.	A transformer coupled class A large signal amplifier has maximum and minimum values of collector to emitter voltage of 25V and 2.5V. Find its collector efficiency.	2	2	1	1,2
9.	Draw the output wave for positive clamper with negative V _{Ref}	2	2	4	1
10.	Distinguish between linear and nonlinear wave shaping.	2	1	4	1
	Part-B (5 \times 8 = 40 Marks)				
11.a)	Explain the functionality of any three Drift compensation techniques.	4	2	1	1,2
b)	Derive overall gain expression for N-stage cascaded amplifier circuit	4	3	1	1,2
12.a)	Discuss the types of negative feedback amplifier and give the effect of each type of feedback on input impedance, output impedance, gain and bandwidth of the basic amplifier.	4	2	1	1,2
b)	Draw the circuit diagram of an amplifier with Current series feedback. Derive the expression for gain, Z_{in} , Z_{o} with feedback.	4	4	1	1,2
13.a)	A Colpitt's Oscillator is designed with C ₁ =100pF, C ₂ =7,500pF and the inductance is variable. Determine the range of inductance values, if the frequency of Oscillations is to vary between 950 KHz and 2050 KHz.	4	2	2	1,
b)	Derive the expression for frequency of sustained Oscillations for Hartley Oscillator.	4	4	2	2,3

Draw the Circuit diagram of push - pull class B amplifier and explain its	4	~	1	1.0
operation. Derive an expression for its maximum conversion efficiency.	4	2	1	1,2
A Sinusoidal Signal V_s =1.95sin400t is applied to a power amplifier. The resulting current is I_o =12sin400t+1.2sin800t+0.9sin1200t+0.4sin1600t.Caculate i) The total harmonic distortion. ii) The percentage increase in power because of distortion.	4	3	1	1,2
Draw and analyze the output of the low pass RC circuit for different time constants to i) Step Voltage input ii) Pulse input	4	4	4	2,3
Explain the operation of Negative Clamper Circuit.	4	2	4	1
An RC coupled amplifier has a voltage gain of 1000. $f_1 = 50 HZ$ and $f_2 = 200$ KHZ and a distortion of 5% without feedback. Find the amplifier A_{vf} , f_{1f} , f_{2f} and distortion when a negative fed back is applied with a feedback ratio of 0.01.	4	3	1	2,3
Draw the circuit diagram of an amplifier with Voltage series feedback. Derive the expression for gain, Z_{in} , Z_{o} with feedback.	4	3	1	1,2
Answer any two of the following:				
Draw the equivalent circuit of Crystal and write the equations for f_{p} and $f_{\text{s}}.$	4	2	2	1,2
Write the importance of Complementary Symmetry push-pull power amplifier.	4	2	1	1
Derive an expression for the upper cut-off frequency of a low pass RC circuit.	4	3	4	1,2
	operation. Derive an expression for its maximum conversion efficiency. A Sinusoidal Signal V _s =1.95sin400t is applied to a power amplifier. The resulting current is I _o =12sin400t+1.2sin800t+0.9sin1200t+0.4sin1600t.Caculate i) The total harmonic distortion. ii) The percentage increase in power because of distortion. Draw and analyze the output of the low pass RC circuit for different time constants to i) Step Voltage input ii) Pulse input Explain the operation of Negative Clamper Circuit. An RC coupled amplifier has a voltage gain of 1000. f ₁ = 50HZ and f ₂ = 200 KHZ and a distortion of 5% without feedback. Find the amplifier A _{vf} , f _{1f} , f _{2f} and distortion when a negative fed back is applied with a feedback ratio of 0.01. Draw the circuit diagram of an amplifier with Voltage series feedback. Derive the expression for gain, Z _{in} , Z _o with feedback. Answer any <i>two</i> of the following: Draw the equivalent circuit of Crystal and write the equations for f _p and f _s . Write the importance of Complementary Symmetry push-pull power amplifier. Derive an expression for the upper cut-off frequency of a low pass RC	operation. Derive an expression for its maximum conversion efficiency. A Sinusoidal Signal V _s =1.95sin400t is applied to a power amplifier. The resulting current is I _o =12sin400t+1.2sin800t+0.9sin1200t+0.4sin1600t.Caculate i) The total harmonic distortion. ii) The percentage increase in power because of distortion. Draw and analyze the output of the low pass RC circuit for different time constants to i) Step Voltage input ii) Pulse input Explain the operation of Negative Clamper Circuit. An RC coupled amplifier has a voltage gain of 1000. f ₁ = 50HZ and f ₂ = 200 KHZ and a distortion of 5% without feedback. Find the amplifier A _{vf} , f _{1f} , f _{2f} and distortion when a negative fed back is applied with a feedback ratio of 0.01. Draw the circuit diagram of an amplifier with Voltage series feedback. Derive the expression for gain, Z _{in} , Z _o with feedback. Answer any <i>two</i> of the following: Draw the equivalent circuit of Crystal and write the equations for f _p and f _s . Write the importance of Complementary Symmetry push-pull power amplifier. Derive an expression for the upper cut-off frequency of a low pass RC 4	operation. Derive an expression for its maximum conversion efficiency. A Sinusoidal Signal V _s =1.95sin400t is applied to a power amplifier. The resulting current is I _o =12sin400t+1.2sin800t+0.9sin1200t+0.4sin1600t.Caculate i) The total harmonic distortion. ii) The percentage increase in power because of distortion. Draw and analyze the output of the low pass RC circuit for different time constants to i) Step Voltage input ii) Pulse input Explain the operation of Negative Clamper Circuit. An RC coupled amplifier has a voltage gain of 1000. f ₁ = 50HZ and f ₂ = 200 KHZ and a distortion of 5% without feedback. Find the amplifier A _{vf} , f _{1fs} , f _{2f} and distortion when a negative fed back is applied with a feedback ratio of 0.01. Draw the circuit diagram of an amplifier with Voltage series feedback. Answer any two of the following: Draw the equivalent circuit of Crystal and write the equations for f _p and f _s . Write the importance of Complementary Symmetry push-pull power amplifier. Derive an expression for the upper cut-off frequency of a low pass RC 4 3	operation. Derive an expression for its maximum conversion efficiency. A Sinusoidal Signal V_s =1.95sin400t is applied to a power amplifier. The resulting current is I_o =12sin400t+1.2sin800t+0.9sin1200t+0.4sin1600t.Caculate i) The total harmonic distortion. ii) The percentage increase in power because of distortion. Draw and analyze the output of the low pass RC circuit for different time constants to i) Step Voltage input ii) Pulse input Explain the operation of Negative Clamper Circuit. 4 2 4 4 3 1 f_2 = 200 KHZ and a distortion of 5% without feedback. Find the amplifier $A_{\rm vf}$, $f_{1\rm f}$, $f_{2\rm f}$ and distortion when a negative fed back is applied with a feedback ratio of 0.01. Draw the circuit diagram of an amplifier with Voltage series feedback. Answer any <i>two</i> of the following: Draw the equivalent circuit of Crystal and write the equations for f_p and f_s . Write the importance of Complementary Symmetry push-pull power amplifier. Derive an expression for the upper cut-off frequency of a low pass RC 4 3 4

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	60
2	Knowledge on application and analysis (Level-3 & 4)	40
3	*Critical thinking and ability to design (Level-5 & 6)	
	(*wherever applicable)	

ককককক